Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
JAMA Netw Open ; 6(5): e2313586, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2323087

ABSTRACT

Importance: Adverse outcomes of COVID-19 in the pediatric population include disease and hospitalization, leading to school absenteeism. Booster vaccination for eligible individuals across all ages may promote health and school attendance. Objective: To assess whether accelerating COVID-19 bivalent booster vaccination uptake across the general population would be associated with reduced pediatric hospitalizations and school absenteeism. Design, Setting, and Participants: In this decision analytical model, a simulation model of COVID-19 transmission was fitted to reported incidence data from October 1, 2020, to September 30, 2022, with outcomes simulated from October 1, 2022, to March 31, 2023. The transmission model included the entire age-stratified US population, and the outcome model included children younger than 18 years. Interventions: Simulated scenarios of accelerated bivalent COVID-19 booster campaigns to achieve uptake that was either one-half of or similar to the age-specific uptake observed for 2020 to 2021 seasonal influenza vaccination in the eligible population across all age groups. Main Outcomes and Measures: The main outcomes were estimated hospitalizations, intensive care unit admissions, and isolation days of symptomatic infection averted among children aged 0 to 17 years and estimated days of school absenteeism averted among children aged 5 to 17 years under the accelerated bivalent booster campaign simulated scenarios. Results: Among children aged 5 to 17 years, a COVID-19 bivalent booster campaign achieving age-specific coverage similar to influenza vaccination could have averted an estimated 5 448 694 (95% credible interval [CrI], 4 936 933-5 957 507) days of school absenteeism due to COVID-19 illness. In addition, the booster campaign could have prevented an estimated 10 019 (95% CrI, 8756-11 278) hospitalizations among the pediatric population aged 0 to 17 years, of which 2645 (95% CrI, 2152-3147) were estimated to require intensive care. A less ambitious booster campaign with only 50% of the age-specific uptake of influenza vaccination among eligible individuals could have averted an estimated 2 875 926 (95% CrI, 2 524 351-3 332 783) days of school absenteeism among children aged 5 to 17 years and an estimated 5791 (95% CrI, 4391-6932) hospitalizations among children aged 0 to 17 years, of which 1397 (95% CrI, 846-1948) were estimated to require intensive care. Conclusions and Relevance: In this decision analytical model, increased uptake of bivalent booster vaccination among eligible age groups was associated with decreased hospitalizations and school absenteeism in the pediatric population. These findings suggest that although COVID-19 prevention strategies often focus on older populations, the benefits of booster campaigns for children may be substantial.


Subject(s)
COVID-19 , Influenza, Human , Child , Humans , Influenza, Human/prevention & control , Absenteeism , Health Promotion , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Hospitalization , Schools
2.
Infect Dis Model ; 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2242632

ABSTRACT

Testing and isolation remain a key component of public health responses to both persistent and emerging infectious diseases. Although the value of these measures have been demonstrated in combating recent outbreaks including the COVID-19 pandemic and monkeypox, their impact depends critically on the timelines of testing and start of isolation during the course of disease. To investigate this impact, we developed a delay differential model and incorporated age-since-symptom-onset as a parameter for delay in testing. We then used the model to compare the outcomes of reverse-transcription polymerase chain reaction (RT-PCR) and rapid antigen (RA) testing methods when isolation starts either at the time of testing or at the time of test result. Parameterizing the model with estimates of SARS-CoV-2 infection and diagnostic sensitivity of the tests, we found that the reduction of disease transmission using the RA test can be comparable to that achieved by applying the RT-PCR test. Given constraints and inevitable delays associated with sample collection and laboratory assays in RT-PCR testing post symptom onset, self-administered RA tests with short turnaround times present a viable alternative for timely isolation of infectious cases.

3.
JAMA Netw Open ; 5(11): e2243127, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2127460

ABSTRACT

Importance: New York City, an early epicenter of the pandemic, invested heavily in its COVID-19 vaccination campaign to mitigate the burden of disease outbreaks. Understanding the return on investment (ROI) of this campaign would provide insights into vaccination programs to curb future COVID-19 outbreaks. Objective: To estimate the ROI of the New York City COVID-19 vaccination campaign by estimating the tangible direct and indirect costs from a societal perspective. Design, Setting, and Participants: This decision analytical model of disease transmission was calibrated to confirmed and probable cases of COVID-19 in New York City between December 14, 2020, and January 31, 2022. This simulation model was validated with observed patterns of reported hospitalizations and deaths during the same period. Exposures: An agent-based counterfactual scenario without vaccination was simulated using the calibrated model. Main Outcomes and Measures: Costs of health care and deaths were estimated in the actual pandemic trajectory with vaccination and in the counterfactual scenario without vaccination. The savings achieved by vaccination, which were associated with fewer outpatient visits, emergency department visits, emergency medical services, hospitalizations, and intensive care unit admissions, were also estimated. The value of a statistical life (VSL) lost due to COVID-19 death and the productivity loss from illness were accounted for in calculating the ROI. Results: During the study period, the vaccination campaign averted an estimated $27.96 (95% credible interval [CrI], $26.19-$29.84) billion in health care expenditures and 315 724 (95% CrI, 292 143-340 420) potential years of life lost, averting VSL loss of $26.27 (95% CrI, $24.39-$28.21) billion. The estimated net savings attributable to vaccination were $51.77 (95% CrI, $48.50-$55.85) billion. Every $1 invested in vaccination yielded estimated savings of $10.19 (95% CrI, $9.39-$10.87) in direct and indirect costs of health outcomes that would have been incurred without vaccination. Conclusions and Relevance: Results of this modeling study showed an association of the New York City COVID-19 vaccination campaign with reduction in severe outcomes and avoidance of substantial economic losses. This significant ROI supports continued investment in improving vaccine uptake during the ongoing pandemic.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , New York City/epidemiology , COVID-19 Vaccines/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Immunization Programs , Investments
4.
BMC Med ; 20(1): 452, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2139290

ABSTRACT

BACKGROUND: Diagnostic testing has been pivotal in detecting SARS-CoV-2 infections and reducing transmission through the isolation of positive cases. We quantified the value of implementing frequent, rapid antigen (RA) testing in the workplace to identify screening programs that are cost-effective. METHODS: To project the number of cases, hospitalizations, and deaths under alternative screening programs, we adapted an agent-based model of COVID-19 transmission and parameterized it with the demographics of Ontario, Canada, incorporating vaccination and waning of immunity. Taking into account healthcare costs and productivity losses associated with each program, we calculated the incremental cost-effectiveness ratio (ICER) with quality-adjusted life year (QALY) as the measure of effect. Considering RT-PCR testing of only severe cases as the baseline scenario, we estimated the incremental net monetary benefits (iNMB) of the screening programs with varying durations and initiation times, as well as different booster coverages of working adults. RESULTS: Assuming a willingness-to-pay threshold of CDN$30,000 per QALY loss averted, twice weekly workplace screening was cost-effective only if the program started early during a surge. In most scenarios, the iNMB of RA screening without a confirmatory RT-PCR or RA test was comparable or higher than the iNMB for programs with a confirmatory test for RA-positive cases. When the program started early with a duration of at least 16 weeks and no confirmatory testing, the iNMB exceeded CDN$1.1 million per 100,000 population. Increasing booster coverage of working adults improved the iNMB of RA screening. CONCLUSIONS: Our findings indicate that frequent RA testing starting very early in a surge, without a confirmatory test, is a preferred screening program for the detection of asymptomatic infections in workplaces.


Subject(s)
COVID-19 , Workplace , Adult , Humans , Cost-Benefit Analysis , COVID-19/diagnosis , SARS-CoV-2/genetics , Ontario
6.
PNAS Nexus ; 1(3): pgac100, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1973239

ABSTRACT

Quarantine and serial testing strategies for a disease depend principally on its incubation period and infectiousness profile. In the context of COVID-19, these primary public health tools must be modulated with successive SARS CoV-2 variants of concern that dominate transmission. Our analysis shows that (1) vaccination status of an individual makes little difference to the determination of the appropriate quarantine duration of an infected case, whereas vaccination coverage of the population can have a substantial effect on this duration, (2) successive variants can challenge disease control efforts by their earlier and increased transmission in the disease time course relative to prior variants, and (3) sufficient vaccine boosting of a population substantially aids the suppression of local transmission through frequent serial testing. For instance, with Omicron, increasing immunity through vaccination and boosters-for instance with 100% of the population is fully immunized and at least 24% having received a third dose-can reduce quarantine durations by up to 2 d, as well as substantially aid in the repression of outbreaks through serial testing. Our analysis highlights the paramount importance of maintaining high population immunity, preferably by booster uptake, and the role of quarantine and testing to control the spread of SARS CoV-2.

7.
Commun Med (Lond) ; 2: 84, 2022.
Article in English | MEDLINE | ID: covidwho-1927107

ABSTRACT

Background: Rapid antigen (RA) tests are being increasingly employed to detect SARS-CoV-2 infections in quarantine and surveillance. Prior research has focused on RT-PCR testing, a single RA test, or generic diagnostic characteristics of RA tests in assessing testing strategies. Methods: We have conducted a comparative analysis of the post-quarantine transmission, the effective reproduction number during serial testing, and the false-positive rates for 18 RA tests with emergency use authorization from The United States Food and Drug Administration and an RT-PCR test. To quantify the extent of transmission, we developed an analytical mathematical framework informed by COVID-19 infectiousness, test specificity, and temporal diagnostic sensitivity data. Results: We demonstrate that the relative effectiveness of RA tests and RT-PCR testing in reducing post-quarantine transmission depends on the quarantine duration and the turnaround time of testing results. For quarantines of two days or shorter, conducting a RA test on exit from quarantine reduces onward transmission more than a single RT-PCR test (with a 24-h delay) conducted upon exit. Applied to a complementary approach of performing serial testing at a specified frequency paired with isolation of positives, we have shown that RA tests outperform RT-PCR with a 24-h delay. The results from our modeling framework are consistent with quarantine and serial testing data collected from a remote industry setting. Conclusions: These RA test-specific results are an important component of the tool set for policy decision-making, and demonstrate that judicious selection of an appropriate RA test can supply a viable alternative to RT-PCR in efforts to control the spread of disease.

8.
BMC Public Health ; 22(1): 1042, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1865293

ABSTRACT

BACKGROUND: Nunavut, the northernmost Arctic territory of Canada, experienced three community outbreaks of the coronavirus disease 2019 (COVID-19) from early November 2020 to mid-June 2021. We sought to investigate how non-pharmaceutical interventions (NPIs) and vaccination affected the course of these outbreaks. METHODS: We used an agent-based model of disease transmission to simulate COVID-19 outbreaks in Nunavut. The model encapsulated demographics and household structure of the population, the effect of NPIs, and daily number of vaccine doses administered. We fitted the model to inferred, back-calculated infections from incidence data reported from October 2020 to June 2021. We then compared the fit of the scenario based on case count data with several counterfactual scenarios without the effect of NPIs, without vaccination, and with a hypothetical accelerated vaccination program whereby 98% of the vaccine supply was administered to eligible individuals. RESULTS: We found that, without a territory-wide lockdown during the first COVID-19 outbreak in November 2020, the peak of infections would have been 4.7 times higher with a total of 5,404 (95% CrI: 5,015-5,798) infections before the start of vaccination on January 6, 2021. Without effective NPIs, we estimated a total of 4,290 (95% CrI: 3,880-4,708) infections during the second outbreak under the pace of vaccination administered in Nunavut. In a hypothetical accelerated vaccine rollout, the total infections during the second Nunavut outbreak would have been 58% lower, to 1,812 (95% CrI: 1,593-2,039) infections. Vaccination was estimated to have the largest impact during the outbreak in April 2021, averting 15,196 (95% CrI: 14,798-15,591) infections if the disease had spread through Nunavut communities. Accelerated vaccination would have further reduced the total infections to 243 (95% CrI: 222-265) even in the absence of NPIs. CONCLUSIONS: NPIs have been essential in mitigating pandemic outbreaks in this large, geographically distanced and remote territory. While vaccination has the greatest impact to prevent infection and severe outcomes, public health implementation of NPIs play an essential role in the short term before attaining high levels of immunity in the population.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Canada , Communicable Disease Control , Disease Outbreaks/prevention & control , Humans , Nunavut/epidemiology , SARS-CoV-2 , Vaccination
9.
Lancet Reg Health Eur ; 14: 100304, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1829133

ABSTRACT

BACKGROUND: Numerous countries have imposed strict travel restrictions during the COVID-19 pandemic, contributing to a large socioeconomic burden. The long quarantines that have been applied to contacts of cases may be excessive for travel policy. METHODS: We developed an approach to evaluate imminent countrywide COVID-19 infections after 0-14-day quarantine and testing. We identified the minimum travel quarantine duration such that the infection rate within the destination country did not increase compared to a travel ban, defining this minimum quarantine as "sufficient." FINDINGS: We present a generalised analytical framework and a specific case study of the epidemic situation on November 21, 2021, for application to 26 European countries. For most origin-destination country pairs, a three-day or shorter quarantine with RT-PCR or antigen testing on exit suffices. Adaptation to the European Union traffic-light risk stratification provided a simplified policy tool. Our analytical approach provides guidance for travel policy during all phases of pandemic diseases. INTERPRETATION: For nearly half of origin-destination country pairs analysed, travel can be permitted in the absence of quarantine and testing. For the majority of pairs requiring controls, a short quarantine with testing could be as effective as a complete travel ban. The estimated travel quarantine durations are substantially shorter than those specified for traced contacts. FUNDING: EasyJet (JPT and APG), the Elihu endowment (JPT), the Burnett and Stender families' endowment (APG), the Notsew Orm Sands Foundation (JPT and APG), the National Institutes of Health (MCF), Canadian Institutes of Health Research (SMM) and Natural Sciences and Engineering Research Council of Canada EIDM-MfPH (SMM).

11.
Clin Infect Dis ; 73(12): 2257-2264, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1596073

ABSTRACT

BACKGROUND: Global vaccine development efforts have been accelerated in response to the devastating coronavirus disease 2019 (COVID-19) pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States. METHODS: We developed an agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, whereas children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achieving 40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection and specified 10% preexisting population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current nonpharmaceutical interventions in the United States. RESULTS: Vaccination reduced the overall attack rate to 4.6% (95% credible interval [CrI]: 4.3%-5.0%) from 9.0% (95% CrI: 8.4%-9.4%) without vaccination, over 300 days. The highest relative reduction (54%-62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-intensive care unit (ICU) hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3%-66.7%), 65.6% (95% CrI: 62.2%-68.6%), and 69.3% (95% CrI: 65.5%-73.1%), respectively, across the same period. CONCLUSIONS: Our results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with nonpharmaceutical interventions is essential to achieve this impact.


Subject(s)
COVID-19 , Adolescent , COVID-19 Vaccines , Child , Disease Outbreaks/prevention & control , Humans , SARS-CoV-2 , United States/epidemiology , Vaccination , Vaccine Development , Vaccine Efficacy
12.
Lancet Reg Health Am ; 6: 100147, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1587087

ABSTRACT

BACKGROUND: The fourth wave of COVID-19 pandemic peaked in the US at 160,000 daily cases, concentrated primarily in southern states. As the Delta variant has continued to spread, we evaluated the impact of accelerated vaccination on reducing hospitalization and deaths across northeastern and southern regions of the US census divisions. METHODS: We used an age-stratified agent-based model of COVID-19 to simulate outbreaks in all states within two U.S. regions. The model was calibrated using reported incidence in each state from October 1, 2020 to August 31, 2021, and parameterized with characteristics of the circulating SARS-CoV-2 variants and state-specific daily vaccination rate. We then projected the number of infections, hospitalizations, and deaths that would be averted between September 2021 and the end of March 2022 if the states increased their daily vaccination rate by 20 or 50% compared to maintaining the status quo pace observed during August 2021. FINDINGS: A 50% increase in daily vaccine doses administered to previously unvaccinated individuals is projected to prevent a total of 30,727 hospitalizations and 11,937 deaths in the two regions between September 2021 and the end of March 2022. Southern states were projected to have a higher weighted average number of hospitalizations averted (18.8) and lives saved (8.3) per 100,000 population, compared to the weighted average of hospitalizations (12.4) and deaths (2.7) averted in northeastern states. On a per capita basis, a 50% increase in daily vaccinations is expected to avert the most hospitalizations in Kentucky (56.7 hospitalizations per 100,000 averted with 95% CrI: 45.56 - 69.9) and prevent the most deaths in Mississippi, (22.1 deaths per 100,000 population prevented with 95% CrI: 18.0 - 26.9). INTERPRETATION: Accelerating progress to population-level immunity by raising the daily pace of vaccination would prevent substantial hospitalizations and deaths in the US, even in those states that have passed a Delta-driven peak in infections. FUNDING: This study was supported by The Commonwealth Fund. SMM acknowledges the support from the Canadian Institutes of Health Research [OV4 - 170643, COVID-19 Rapid Research] and the Natural Sciences and Engineering Research Council of Canada, Emerging Infectious Disease Modelling, MfPH grant. MCF acknowledges support from the National Institutes of Health (5 K01 AI141576).

14.
Lancet Reg Health Am ; 5: 100085, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1487880

ABSTRACT

BACKGROUND: Following the start of COVID-19 vaccination in New York City (NYC), cases have declined over 10-fold from the outbreak peak in January 2020, despite the emergence of highly transmissible variants. We evaluated the impact of NYC's vaccination campaign on saving lives as well as averting hospitalizations and cases. METHODS: We used an age-stratified agent-based model of COVID-19 to include transmission dynamics of Alpha, Gamma, Delta and Iota variants as identified in NYC. The model was calibrated and fitted to reported incidence in NYC, accounting for the relative transmissibility of each variant and vaccination rollout data. We simulated COVID-19 outbreak in NYC under the counterfactual scenario of no vaccination and compared the resulting disease burden with the number of cases, hospitalizations and deaths reported under the actual pace of vaccination. FINDINGS: We found that without vaccination, there would have been a spring-wave of COVID-19 in NYC due to the spread of Alpha and Delta variants. The COVID-19 vaccination campaign in NYC prevented such a wave, and averted 290,467 (95% CrI: 232,551 - 342,664) cases, 48,076 (95% CrI: 42,264 - 53,301) hospitalizations, and 8,508 (95% CrI: 7,374 - 9,543) deaths from December 14, 2020 to July 15, 2021. INTERPRETATION: Our study demonstrates that the vaccination program in NYC was instrumental to substantially reducing the COVID-19 burden and suppressing a surge of cases attributable to more transmissible variants. As the Delta variant sweeps predominantly among unvaccinated individuals, our findings underscore the urgent need to accelerate vaccine uptake and close the vaccination coverage gaps. FUNDING: This study was supported by The Commonwealth Fund.

16.
Ann Intern Med ; 174(11): 1586-1591, 2021 11.
Article in English | MEDLINE | ID: covidwho-1405523

ABSTRACT

BACKGROUND: As of 28 July 2021, 60% of adults in the United States had been fully vaccinated against COVID-19, and more than 34 million cases had been reported. Given the uncertainty regarding undocumented infections, the population level of immunity against COVID-19 in the United States remains undetermined. OBJECTIVE: To estimate the population immunity, defined as the proportion of the population that is protected against SARS-CoV-2 infection due to prior infection or vaccination. DESIGN: Statistical and simulation modeling to estimate overall and age-specific population immunity. SETTING: United States. PARTICIPANTS: Simulated age-stratified population representing U.S. demographic characteristics. MEASUREMENTS: The true number of SARS-CoV-2 infections in the United States was inferred from data on reported deaths using age-specific infection-fatality rates (IFRs). Taking into account the estimates for vaccine effectiveness and protection against reinfection, the overall population immunity was determined as the sum of protection levels in vaccinated persons and those who were previously infected but not vaccinated. RESULTS: Using age-specific IFR estimates from the Centers for Disease Control and Prevention, it was estimated that as of 15 July 2021, 114.9 (95% credible interval [CrI], 103.2 to 127.4) million persons had been infected with SARS-CoV-2 in the United States. The mean overall population immunity was 62.0% (CrI, 58.4% to 66.4%). Adults aged 65 years or older were estimated to have the highest immunity level (77.2% [CrI, 76.2% to 78.6%]), and children younger than 12 years had the lowest immunity level (17.9% [CrI, 14.4% to 21.9%]). LIMITATION: Publicly reported deaths may underrepresent actual deaths. CONCLUSION: As of 15 July 2021, the U.S. population immunity against COVID-19 may still have been insufficient to contain the outbreaks and safely revert to prepandemic social behavior. PRIMARY FUNDING SOURCE: National Science Foundation, National Institutes of Health, Notsew Orm Sands Foundation, Canadian Institutes of Health Research, and Natural Sciences and Engineering Research Council of Canada.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , Female , Humans , Immunity, Herd , Infant , Male , Middle Aged , Pandemics , SARS-CoV-2 , United States/epidemiology
17.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: covidwho-1352016

ABSTRACT

Quantification of asymptomatic infections is fundamental for effective public health responses to the COVID-19 pandemic. Discrepancies regarding the extent of asymptomaticity have arisen from inconsistent terminology as well as conflation of index and secondary cases which biases toward lower asymptomaticity. We searched PubMed, Embase, Web of Science, and World Health Organization Global Research Database on COVID-19 between January 1, 2020 and April 2, 2021 to identify studies that reported silent infections at the time of testing, whether presymptomatic or asymptomatic. Index cases were removed to minimize representational bias that would result in overestimation of symptomaticity. By analyzing over 350 studies, we estimate that the percentage of infections that never developed clinical symptoms, and thus were truly asymptomatic, was 35.1% (95% CI: 30.7 to 39.9%). At the time of testing, 42.8% (95% prediction interval: 5.2 to 91.1%) of cases exhibited no symptoms, a group comprising both asymptomatic and presymptomatic infections. Asymptomaticity was significantly lower among the elderly, at 19.7% (95% CI: 12.7 to 29.4%) compared with children at 46.7% (95% CI: 32.0 to 62.0%). We also found that cases with comorbidities had significantly lower asymptomaticity compared to cases with no underlying medical conditions. Without proactive policies to detect asymptomatic infections, such as rapid contact tracing, prolonged efforts for pandemic control may be needed even in the presence of vaccination.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification
18.
Lancet Reg Health Am ; 1: 100033, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1347740
SELECTION OF CITATIONS
SEARCH DETAIL